亚洲国产美女,麻豆成全视频免费观看在线看,麻豆成全视频免费观看在线看,精品国产欧美成人夜夜嗨

撥號18861759551

你的位置:首頁 > 技術(shù)文章 > 調(diào)制傳遞函數(shù)簡介

技術(shù)文章

調(diào)制傳遞函數(shù)簡介

技術(shù)文章

Introduction to Modulation Transfer Function

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF). MTF is used for components as simple as a spherical singlet lens to those as complex as a multi-element ecentric imaging lens assembly. In order to understand the significance of MTF, consider some general principles and practical examples for defining MTF including its components, importance, and characterization.

 

THE COMPONENTS OF MTF

To properly define the modulation transfer function, it is necessary to first define two terms required to truly characterize image performance: resolution and contrast.

 

Resolution

Resolution is an imaging system's ability to distinguish object detail. It is often expressed in terms of line-pairs per millimeter (where a line-pair is a sequence of one black line and one white line). This measure of line-pairs per millimeter (lp/mm) is also known as frequency. The inverse of the frequency yields the spacing in millimeters between two resolved lines. Bar targets with a series of equally spaced, alternating white and black bars (i.e. a 1951 USAF target or a Ronchi ruling) are ideal for testing system performance. For a more detailed explanation of test targets, view Choosing the Correct Test Target. For all imaging optics, when imaging such a pattern, perfect line edges become blurred to a degree (Figure 1). High-resolution images are those which exhibit a large amount of detail as a result of minimal blurring. Conversely, low-resolution images lack fine detail.

Figure 1: Perfect Line Edges Before (Left) and After (Right) Passing through a Low Resolution Imaging Lens

 

A practical way of understanding line-pairs is to think of them as pixels on a camera sensor, where a single line-pair corresponds to two pixels (Figure 2). Two camera sensor pixels are needed for each line-pair of resolution: one pixel is dedicated to the red line and the other to the blank space between pixels. Using the aforementioned metaphor, image resolution of the camera can now be specified as equal to twice its pixel size.

Figure 2: Imaging Scenarios Where (a) the Line-Pair is NOT Resolved and (b) the Line-Pair is Resolved

 

Correspondingly, object resolution is calculated using the camera resolution and the primary magnification (PMAG) of the imaging lens (Equations 1 – 2). It is important to note that these equations assume the imaging lens contributes no resolution loss.

 

Contrast/Modulation

Consider normalizing the intensity of a bar target by assigning a maximum value to the white bars and zero value to the black bars. Plotting these values results in a square wave, from which the notion of contrast can be more easily seen (Figure 3). Mathematically, contrast is calculated with Equation 3:

Figure 3: Contrast Expressed as a Square Wave

 

When this same principle is applied to the imaging example in Figure 1, the intensity pattern before and after imaging can be seen (Figure 4). Contrast or modulation can then be defined as how faithfully the minimum and maximum intensity values are transferred from object plane to image plane.

 

To understand the relation between contrast and image quality, consider an imaging lens with the same resolution as the one in Figure 1 and Figure 4, but used to image an object with a greater line-pair frequency. Figure 5 illustrates that as the spatial frequency of the lines increases, the contrast of the image decreases. This effect is always present when working with imaging lenses of the same resolution. For the image to appear defined, black must be truly black and white truly white, with a minimal amount of grayscale between.

Figure 4: Contrast of a Bar Target and Its Image

Figure 5: Contrast Comparison at Object and Image Planes

 

In imaging applications, the imaging lens, camera sensor, and illumination play key roles in determining the resulting image contrast. The lens contrast is typically defined in terms of the percentage of the object contrast that is reproduced. The sensor's ability to reproduce contrast is usually specified in terms of decibels (dB) in analog cameras and bits in digital cameras.

 

UNDERSTANDING MTF

Now that the components of the modulation transfer function (MTF), resolution and contrast/modulation, are defined, consider MTF itself. The MTF of a lens, as the name implies, is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification. As line spacing decreases (i.e. the frequency increases) on the test target, it becomes increasingly difficult for the lens to efficiently transfer this decrease in contrast; as result, MTF decreases (Figure 6).

Figure 6: MTF for an Aberration-Free Lens with a Rectangular Aperture

 

For an aberration-free image with a circular pupil, MTF is given by Equation 4, where MTF is a function of spatial resolution (ξ), which refers to the smallest line-pair the system can resolve. The cut-off frequency (ξc) is given by Equation 6.

 

Figure 6 plots the MTF of an aberration-free image with a rectangular pupil. As can be expected, the MTF decreases as the spatial resolution increases. It is important to note that these cases are idealized and that no actual system is compley aberration-free.

THE IMPORTANCE OF MTF

In traditional system integration (and less crucial applications), the system's performance is roughly estimated using the principle of the weakest link. The principle of the weakest link proposes that a system's resolution is solely limited by the component with the lowest resolution. Although this approach is very useful for quick estimations, it is actually flawed because every component within the system contributes error to the image, yielding poorer image quality than the weakest link alone.

 

Every component within a system has an associated modulation transfer function (MTF) and, as a result, contributes to the overall MTF of the system. This includes the imaging lens, camera sensor, image capture boards, and video cables, for instance. The resulting MTF of the system is the product of all the MTF curves of its components (Figure 7). For instance, a 25mm fixed focal length lens and a 25mm double gauss lens can be compared by evaluating the resulting system performance of both lenses with a Sony monochrome camera. By analyzing the system MTF curve, it is straightforward to determine which combination will yield sufficient performance. In some metrology applications, for example, a certain amount of contrast is required for accurate image edge detection. If the minimum contrast needs to be 35% and the image resolution required is 30 lp/mm, then the 25mm double gauss lens is the best choice.

 

MTF is one of the best tools available to quantify the overall imaging performance of a system in terms of resolution and contrast. As a result, knowing the MTF curves of each imaging lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Figure 7: System MTF is the Product of the MTF of Individual Component: Lens MTF x Camera MTF = System MTF

 

CHARACTERIZATION OF MTF

Determining Real-World MTF

A theoretical modulation transfer function (MTF) curve can be generated from the optical prescription of any lens. Although this can be helpful, it does not indicate the actual, real-world performance of the lens after accounting for manufacturing tolerances. Manufacturing tolerances always introduce some performance loss to the original optical design since factors such as geometry and coating deviate slightly from an ideal lens or lens system. For this reason, in our manufacturing sites, Edmund Optics® invests in optical test and measurement equipment for quantifying MTF. This MTF test and measurement equipment allows for characterization of the actual performance of both designed lenses and commercial lenses (whose optical prescription is not available to the public). As a result, precise integration - previously limited to lenses with known prescriptions - can now include commercial lenses.

 

Reading MTF Graphs/Data

Reading Modulation Transfer Function Graphs/Data

A greater area under the MTF curve does not always indicate the optimal choice. A designer should decide based on the resolution of the application at hand. As previously discussed, an MTF graph plots the percentage of transferred contrast versus the frequency (cycles/mm) of the lines. A few things should be noted about the MTF curves offered by Edmund Optics®:

 

Each MTF curve is calculated for a single point in space. Typical field points include on-axis, 70% field, and full-field. 70% is a common reference point because it captures approximay 50% of the total imaging area.

Off-axis MTF data is calculated for both tangential and sagittal cases (denoted by T and S, respectively). Occasionally an average of the two is presented rather than the two individual curves.

MTF curves are dependent on several factors, such as system conjugates, wavebands, and f/#. An MTF curve is calculated at specified values of each; therefore, it is important to review these factors before determining whether a component will work for a certain application.

The spatial frequency is expressed in terms of cycles (or line-pairs) per millimeter. The inverse of this frequency yields the spacing of a line-pair (a cycle of one black bar and one white bar) in millimeters.

The nominal MTF curve is generated using the standard prescription information available in optical design programs. This prescription information can also be found on our global website, in our print catalogs, and in our lens catalogs supplied to Zemax®. The nominal MTF represents the best-case scenario and does not take into account manufacturing tolerances.

Conceptually, MTF can be difficult to grasp. Perhaps the easiest way to understand this notion of transferring contrast from object to image plane is by examining a real-world example. Figures 8 - 12 compare MTF curves and images for two 25mm fixed focal length imaging lenses: #54-855 Finite Conjugate Micro-Video Lens and #59-871 Compact Fixed Focal Length Lens. Figure 8 shows polychromatic diffraction MTF for these two lenses. Depending upon the testing conditions, both lenses can yield equivalent performance. In this particular example, both are trying to resolve group 2, elements 5 -6 (indicated by the red boxes in Figure 10) and group 3, elements 5 – 6 (indicated by the blue boxes in Figure 10) on a 1951 USAF resolution target (Figure 9). In terms of actual object size, group 3, elements 5 – 6 represent 6.35 – 7.13lp/mm (14.03 - 15.75μm) and group 3, elements 5 – 6 represent 12.70 – 14.25lp/mm (7.02 - 7.87μm). For an easy way to calculate resolution given element and group numbers, use our 1951 USAF Resolution EO Tech Tool.

 

Under the same testing parameters, it is clear to see that #59-871 (with a better MTF curve) yields better imaging performance compared to #54-855 (Figures 11 – 12). In this real-world example with these particular 1951 USAF elements, a higher modulation value at higher spatial frequencies corresponds to a clearer image; however, this is not always the case. Some lenses are designed to be able to very accuray resolve lower spatial frequencies, and have a very low cut-off frequency (i.e. they cannot resolve higher spatial frequencies). Had the target been group -1, elements 5-6, the two lenses would have produced much more similar images given their modulation values at lower frequencies.

Figure 8: Comparison of Polychromatic Diffraction MTF for #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right)

Figure 9: 1951 USAF Resolution Target

 

Figure 10: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 (Red Boxes) and Group 3, Elements 5 – 6 (Blue Boxes) on a 1951 USAF Resolution Target

 

Figure 11: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 on a 1951 USAF Resolution Target

 

Figure 12: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 3, Elements 5 – 6 on a 1951 USAF Resolution Target

 

Modulation transfer function (MTF) is one of the most important parameters by which image quality is measured. Optical designers and engineers frequently refer to MTF data, especially in applications where success or failure is contingent on how accuray a particular object is imaged. To truly grasp MTF, it is necessary to first understand the ideas of resolution and contrast, as well as how an object's image is transferred from object to image plane. While initially daunting, understanding and eventually interpreting MTF data is a very powerful tool for any optical designer. With knowledge and experience, MTF can make selecting the appropriate lens a far easier endeavor - despite the multitude of offerings.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
亚洲国产美女,麻豆成全视频免费观看在线看,麻豆成全视频免费观看在线看,精品国产欧美成人夜夜嗨
4438x亚洲最大成人网| 亚洲国产综合视频在线观看| 亚洲精品免费一二三区| 精品99一区二区三区| 日韩三级视频中文字幕| 久久综合色鬼综合色| 欧美日韩中文国产| 91蝌蚪porny九色| 国产精品影视天天线| 欧美精品在线观看一区二区| 亚洲三级久久久| 国产精品你懂的在线| 青青青伊人色综合久久| 亚洲免费观看视频| 日韩精品自拍偷拍| 一本色道**综合亚洲精品蜜桃冫| 亚洲一区免费在线观看| 成人性生交大片| 欧美丰满少妇xxxbbb| 国产精品66部| 欧美日韩成人一区二区| 国产成人精品一区二| 一区二区三区.www| 日韩av一区二区三区| 欧美日韩综合一区| 欧美一区二区三区喷汁尤物| 国产精品进线69影院| 麻豆精品一二三| 日韩午夜在线播放| 亚洲人成网站在线| 7777精品伊人久久久大香线蕉经典版下载| 91亚洲精品一区二区乱码| 精品少妇一区二区三区在线播放| 国产欧美在线观看一区| 欧美一区二区三区四区久久| 国产一区二区三区久久悠悠色av| 欧美最猛黑人xxxxx猛交| 亚洲国产成人av好男人在线观看| 欧美一区二区三区播放老司机| 欧美性大战xxxxx久久久| 尤物视频一区二区| 欧美美女一区二区三区| 中文字幕在线一区二区三区| 色妹子一区二区| 久久久久久久电影| 亚洲chinese男男1069| 国产日韩视频一区二区三区| 欧美亚洲禁片免费| 国产一区 二区 三区一级| 99视频有精品| zzijzzij亚洲日本少妇熟睡| 国产成人久久精品77777最新版本| 午夜精品爽啪视频| 亚洲国产精品久久人人爱| 麻豆国产欧美日韩综合精品二区| 日韩一卡二卡三卡国产欧美| 日韩欧美一区在线| 精品少妇一区二区三区视频免付费| 亚洲精选在线视频| 国产欧美日韩另类视频免费观看| 国产精品国产三级国产aⅴ无密码| 欧美日韩精品欧美日韩精品一综合| 不卡的av在线| 麻豆精品精品国产自在97香蕉| 免费成人性网站| 蜜桃精品视频在线观看| 欧美一级搡bbbb搡bbbb| 成人免费三级在线| 136国产福利精品导航| 亚洲福利视频三区| 在线成人免费视频| 国产欧美综合在线观看第十页| 国产精品国产三级国产普通话三级| 亚洲成年人影院| 午夜精品123| 欧美xxxxx牲另类人与| 91伊人久久大香线蕉| 欧美在线短视频| 色偷偷88欧美精品久久久| 国产美女视频91| 亚洲欧美日韩国产另类专区| 一二三区精品视频| 成人高清视频在线观看| 日韩福利视频网| 成人夜色视频网站在线观看| 91视频你懂的| 日韩精品1区2区3区| 一本在线高清不卡dvd| 欧美一区二区三区系列电影| 91麻豆文化传媒在线观看| 欧美一区二区视频在线观看2020| 91玉足脚交白嫩脚丫在线播放| 视频一区视频二区中文字幕| 久久99精品国产| 99久久久久免费精品国产| 亚洲专区一二三| 亚洲一级电影视频| 青青青爽久久午夜综合久久午夜| 欧美岛国在线观看| 亚洲午夜精品17c| 精品国产乱码久久久久久闺蜜| 天天色天天操综合| 粉嫩在线一区二区三区视频| 欧美日韩国产经典色站一区二区三区| 亚洲精品一区二区三区福利| 91精品国产综合久久福利软件| 亚洲福利视频三区| 成人综合婷婷国产精品久久蜜臀| 久久精品国产色蜜蜜麻豆| 在线亚洲免费视频| 一区二区三区欧美亚洲| 一区二区三区久久| 欧美午夜在线一二页| 欧美成人高清电影在线| 亚洲人成在线播放网站岛国| 欧美精品一区二区三区四区| 一区二区在线观看av| 99re亚洲国产精品| 成人激情校园春色| 91国产丝袜在线播放| 91精品国产综合久久久久久| 欧美日韩国产片| 国产欧美日韩另类一区| 欧美成人女星排行榜| 成人综合在线网站| 欧美日韩国产一区二区三区地区| 欧美精三区欧美精三区| 久久久久国产一区二区三区四区| 亚洲一区二区精品久久av| 在线看不卡av| 国产成人综合网站| 色综合亚洲欧洲| 中文字幕 久热精品 视频在线| 日韩一区二区电影| 韩国v欧美v日本v亚洲v| 国产精品午夜在线| 成人免费视频播放| 久久久久久99精品| 亚洲国产精品一区二区久久| 亚洲v精品v日韩v欧美v专区| 欧美伊人久久久久久午夜久久久久| 国产福利精品一区二区| 婷婷久久综合九色综合绿巨人| 视频一区二区欧美| 亚洲黄色尤物视频| 91福利区一区二区三区| 6080yy午夜一二三区久久| 欧美肥胖老妇做爰| 成人小视频免费观看| 亚洲欧美欧美一区二区三区| 亚洲人xxxx| 在线影院国内精品| 国产美女精品人人做人人爽| 成人av动漫网站| 亚洲一区二区三区影院| 91久久香蕉国产日韩欧美9色| 国产高清不卡一区| 一区二区三区四区不卡在线| 久久亚区不卡日本| 777久久久精品| 91网站最新网址| 欧美视频一区二区三区四区| 日日夜夜免费精品视频| 99国产精品99久久久久久| 欧美在线观看视频在线| 午夜精品久久久久久不卡8050| 欧美日韩黄视频| 国产视频一区不卡| 5858s免费视频成人| 久久精品国产免费看久久精品| av在线不卡电影| 高清在线不卡av| 国产精品女主播av| 亚洲视频狠狠干| av中文字幕亚洲| 色婷婷久久久亚洲一区二区三区| 看电视剧不卡顿的网站| 欧美一区二区三区四区视频| 国产激情视频一区二区三区欧美| 国产美女视频一区| 欧美一区二区三区在线电影| 久久99精品久久久久久动态图| 国产激情精品久久久第一区二区| 91麻豆精品国产综合久久久久久| 国产91丝袜在线播放0| 久久精品日韩一区二区三区| 亚洲成人在线网站| 精品一区二区三区视频在线观看| 欧美三级三级三级| 色噜噜狠狠成人网p站| 精品视频一区 二区 三区| 亚洲成人自拍偷拍| 国产一区二区精品在线观看| 久久99深爱久久99精品| www国产精品av| 亚洲综合在线免费观看| 美女视频一区二区| 91免费在线看| 国产成人h网站| 加勒比av一区二区|