亚洲国产美女,麻豆成全视频免费观看在线看,麻豆成全视频免费观看在线看,精品国产欧美成人夜夜嗨

撥號18861759551

你的位置:首頁 > 技術(shù)文章 > Laser Damage Threshold Testing

技術(shù)文章

Laser Damage Threshold Testing

技術(shù)文章

Laser Damage Threshold Testing

Laser Damage Threshold (LDT), also known as Laser Induced Damage Threshold (LIDT), is one of the most important specifications to consider when integrating an optical component such as a mirror into a laser system. Using a laser in an application offers a variety of benefits to a standard light source, including monochromaticity, directionality, and coherence. Laser beams often contain high energies and are capable of damaging sensitive optical components. When integrating a laser and optical components into a system, it is crucial to understand the effects of laser beams on optical surfaces and how laser damage threshold is quantified for optical components.

 

The type of damage induced to an optical component by a laser beam is dependent on the wavelength, pulse length, polarization, rep rate, and spatial characteristics among other factors. During exposure to a continuous wave (CW) laser, failure can occur due to laser energy absorption and thermal damage or melting of the substrate material or the optical coating. The damage caused by a short nanosecond laser pulses is typically due to dielectric breakdown of the material that results from exposure to the high electric fields in the laser beam. For pulse widths in between these two regimes or for high rep rate laser systems, laser induced damage may result from a combination of thermally induced damage and breakdown. For ultrashort pulses, about 10ps or less, nonlinear mechanisms such as multiphoton absorption and multiphoton ionization become important.

 

Testing Laser Damage Threshold

Laser-Induced Damage Threshold (LIDT) testing is a good method for quantifying the amount of electromagnetic radiation an optical component can withstand. There are a variety of different LDT tests. For example, Edmund Optics follows the ISO-11254 procedures and methods, which is the industry standard for determining the laser damage threshold of an optical component. Utilizing the ISO-11254 standard enables the fair comparison between optical components from different manufacturers.

 

Edmund Optics' LDT testing is conducted by irradiating a number of test sites with a laser beam at different energy densities for pulsed lasers, or different power densities for CW lasers. The energy density or power density is incrementally increased at a minimum of ten sites at each increment. The process is repeated until damage is observed in of the irradiated sites. The LDT is the highest energy or power level at which no damage is observed in any of the irradiated sites. Inspection of the sites is done with a Nomarsky-type Differential Interference Contrast (DIC) microscope with 100X - 150X magnification. Visible damage is observed and the results are recorded using pass/fail criteria. Figure 1 is a typical damage probability plot of exposure sites as a function of laser pulse energy.

Figure 1: Exposure Histogram of Laser Damage Threshold Probability versus Exposure Site

 

In addition to uncoated optical components, optical coatings are also subject to damage from the presence of absorption sites and plasma burn. Figure 2 is a real-world image of coating failure due to a coating defect. For additional information on the importance of LDT testing on coatings, view The Complexities of High-Power Optical Coatings.

Figure 2: Coating Failure from 73.3 J/cm2 Source due to Coating Defect

 

Defining Laser Damage Threshold

There are many variables that affect the Laser Damage Threshold (LDT) of an optical component. These variables can be separated into three categories: laser, substrate, and optical coating (Table 1).

Variables that Affect LDT/LIDT

Laser

Substrate

Coating

Output Power

Material

Deposited Material

Pulse duration

Surface Quality

Deposition Process

Pulse Repetition Rate

Cleanliness

Pre-Coating Preparation and Cleaning

Beam Profile

Reactivity to the Environment

Lot-to-Lot Control

Beam Diameter (1/e2)

Material Absorption

Coating Design and Optimization

Wavelength

Material Homogeneity

Protective Layers

LDT is typically quantified by power or energy densities for CW and pulsed lasers, respectively. Power density is the power per cross-sectional beam area of the laser beam (typically W/cm2). Similarly, energy density is the energy per cross-sectional beam area of a specific pulse duration (typically given in J/cm2). Lasers are available with a multitude of different wavelengths and pulse durations, therefore, it is useful to be able to scale LDT data to help determine if an optical component is suitable for use with a given laser. As a general rule of thumb, the following equation can be used to roughly estimate LDT from given data, LDT(λ1,τ1), LDT(λ2,τ2). This approximation only holds when scaling over relatively small wavelength or timescale ranges, and can not be used to extrapolate e.g. from ns to fs pulses, or from UV to IR.

In this equation τ1 is the laser pulse length and λ1 is the laser wavelength for the given LDT and τ2 is the laser pulse length and λ2 is the laser wavelength with unknown LDT. For example, the LDT for a mirror is 20 J/cm2 at 1064nm @ 20 ns. The LDT using the scaling rule above at 532nm and 10 ns pulse is 20 x (532/1064) x (10/20)½ or about 7 J/cm2. For longer pulses and high rep rate pulsed lasers it is also necessary to check the CW power density limit as well. The scaling equation is not applicable to ultra-short ps to fs pulsed lasers. When using “scaling” rules, safety factors of at least two times the calculated values should be applied to help ensure optical elements will not be damaged.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
亚洲国产美女,麻豆成全视频免费观看在线看,麻豆成全视频免费观看在线看,精品国产欧美成人夜夜嗨
日本强好片久久久久久aaa| 91尤物视频在线观看| 一区二区三区四区av| 91老司机福利 在线| 欧美sm美女调教| 日韩国产精品91| 91最新地址在线播放| 国产精品久久久久久久蜜臀| 日韩一区二区三区在线观看| 波多野结衣在线aⅴ中文字幕不卡| 国产欧美日韩视频在线观看| 国产在线国偷精品产拍免费yy| 丝袜亚洲精品中文字幕一区| 综合久久给合久久狠狠狠97色| 午夜精品福利一区二区三区av| 激情五月婷婷综合网| 欧美日韩国产bt| 94色蜜桃网一区二区三区| 国产精品99久| 日韩欧美一区二区久久婷婷| 激情久久久久久久久久久久久久久久| 精品第一国产综合精品aⅴ| 久久精品人人做人人爽97| 91精品国模一区二区三区| www.日韩精品| 欧美一级专区免费大片| 欧美日韩你懂得| 91蜜桃在线观看| 26uuu久久综合| 久久精品国产亚洲5555| 欧美群妇大交群中文字幕| 国产亚洲1区2区3区| 欧美日韩亚洲综合| 国产女人aaa级久久久级| 久久99精品一区二区三区三区| 欧美午夜宅男影院| 久久国产生活片100| 91丨porny丨国产入口| 成人国产视频在线观看| 一本色道久久综合狠狠躁的推荐| 国产亚洲欧洲一区高清在线观看| zzijzzij亚洲日本少妇熟睡| 三级精品在线观看| av不卡免费电影| 99re视频这里只有精品| 亚洲蜜桃精久久久久久久| 欧美日韩另类一区| 色伊人久久综合中文字幕| 青草国产精品久久久久久| 免费观看成人av| 国产精品网站在线观看| 麻豆国产欧美日韩综合精品二区| 捆绑调教一区二区三区| 久久综合久久综合九色| 久久色.com| 久久精品国产澳门| 91久久人澡人人添人人爽欧美| 成人中文字幕电影| 粉嫩久久99精品久久久久久夜| 日韩欧美激情在线| 亚洲免费高清视频在线| 国产一二三精品| 精品无人码麻豆乱码1区2区| 欧洲国产伦久久久久久久| 国产a久久麻豆| 国产夫妻精品视频| 欧美视频日韩视频在线观看| 日韩色视频在线观看| 亚洲午夜电影在线| 日韩在线播放一区二区| 五月天视频一区| 99免费精品在线| 亚洲一二三区在线观看| 亚洲国产精品久久一线不卡| 日本欧美久久久久免费播放网| 91污片在线观看| 成人午夜大片免费观看| 欧美一区二区三区电影| 中文字幕在线一区免费| 91免费视频观看| 国产精品第一页第二页第三页| 韩国欧美国产一区| 色94色欧美sute亚洲线路一久| 91国偷自产一区二区使用方法| 日韩亚洲欧美高清| 欧美刺激午夜性久久久久久久| 大白屁股一区二区视频| 日韩欧美在线网站| 久久综合色天天久久综合图片| aaa欧美日韩| voyeur盗摄精品| 欧美日韩一区二区三区四区五区| 91精品国产综合久久久蜜臀粉嫩| 亚洲影视在线播放| 婷婷国产v国产偷v亚洲高清| 91精品国产高清一区二区三区| 日本一区二区成人在线| 亚洲伊人色欲综合网| 石原莉奈一区二区三区在线观看| 精品在线免费视频| 国产呦萝稀缺另类资源| 亚洲6080在线| 91精品黄色片免费大全| 日韩毛片高清在线播放| 欧美精品日日鲁夜夜添| 精品国产一区二区三区忘忧草| 亚洲精品视频在线| 日韩欧美一区二区在线视频| 国产欧美日韩精品一区| 欧美a级一区二区| 国模大尺度一区二区三区| 亚洲午夜一区二区| 欧美日韩国产精品自在自线| 一区二区三区精品久久久| 1024精品合集| 日本韩国一区二区三区| 精品国产乱码久久久久久牛牛| 亚洲另类一区二区| av电影在线观看一区| 欧美中文字幕亚洲一区二区va在线| 国产成人三级在线观看| 亚洲不卡在线观看| 欧美性一二三区| 日本va欧美va瓶| 日韩电影在线一区二区三区| 亚洲天天做日日做天天谢日日欢| 欧美做爰猛烈大尺度电影无法无天| 肉肉av福利一精品导航| 欧美日韩卡一卡二| 欧美日韩一区 二区 三区 久久精品| 精品久久久三级丝袜| 尤物视频一区二区| 亚洲成人福利片| 国产精品每日更新在线播放网址| 欧美精选午夜久久久乱码6080| 最近中文字幕一区二区三区| 亚洲精品日韩综合观看成人91| 亚洲美女视频在线| 91啪亚洲精品| 久久99精品久久久久久国产越南| 久久精品噜噜噜成人88aⅴ| 国产精品影视网| 精品一区二区三区的国产在线播放| 亚洲人精品一区| 欧美精品 国产精品| 99在线精品观看| 国产日韩精品一区| 欧美成人免费网站| 国产精品久久久久影院色老大| 色老汉一区二区三区| 国产一区二区免费看| 欧美在线啊v一区| 《视频一区视频二区| 韩国一区二区在线观看| 国产片一区二区| 一本色道久久综合亚洲91| 精品国产伦一区二区三区观看体验| 欧洲色大大久久| 国产真实精品久久二三区| 国产精品国产三级国产| 亚洲视频一二区| 久久久久久久网| 欧美一级黄色录像| 欧美成人伊人久久综合网| 亚洲综合丁香婷婷六月香| 91日韩精品一区| 国产精品资源网| 日本不卡不码高清免费观看| 国产成人啪午夜精品网站男同| 国产欧美精品一区二区色综合| 日韩一级片在线播放| 色狠狠综合天天综合综合| 一区二区三区不卡在线观看| 久久精品一区二区| 国产亚洲精品bt天堂精选| 欧美aaaaa成人免费观看视频| 国产一区二区影院| 日韩高清中文字幕一区| 天天亚洲美女在线视频| 亚洲国产中文字幕在线视频综合| av在线播放不卡| 秋霞午夜鲁丝一区二区老狼| 一本大道综合伊人精品热热| 日韩美女视频19| 国产在线精品不卡| 日韩免费在线观看| 91福利在线观看| 亚洲欧美区自拍先锋| 国产日韩综合av| 肉丝袜脚交视频一区二区| 亚洲午夜影视影院在线观看| av中文字幕在线不卡| 日韩理论片一区二区| 国产一区二区三区日韩| 在线视频国内自拍亚洲视频| 色综合久久99| 国产欧美日韩在线| 亚洲日本va午夜在线电影| 亚洲精品成人精品456| 国产日韩视频一区二区三区|