亚洲国产美女,麻豆成全视频免费观看在线看,麻豆成全视频免费观看在线看,精品国产欧美成人夜夜嗨

撥號18861759551

你的位置:首頁 > 技術(shù)文章 > 紅外(IR)應(yīng)用的正確材料

技術(shù)文章

紅外(IR)應(yīng)用的正確材料

技術(shù)文章

The Correct Material for Infrared (IR) Applications

Introduction to Infrared (IR)

Infrared (IR) radiation is characterized by wavelengths ranging from 0.750 -1000μm (750 - 1000000nm). Due to limitations on detector range, IR radiation is often divided into three smaller regions: 0.750 - 3μm, 3 - 30μm, and 30 - 1000μm – defined as near-infrared (NIR), mid-wave infrared (MWIR), and far-infrared (FIR), respectively (Figure 1). Infrared products are used extensively in a variety of applications ranging from the detection of IR signals in thermal imaging to element identification in IR spectroscopy. As the need for IR applications grows and technology advances, manufacturers have begun to utilize IR materials in the design of plano-optics (i.e. windows, mirrors, polarizers, beamsplitters, prisms), spherical lenses (i.e. plano-concave/convex, double-concave/convex, meniscus), aspheric lenses (parabolic, hyperbolic, hybrid), achromatic lenses, and assemblies (i.e. imaging lenses, beam expanders, eyepieces, objectives). These IR materials, or substrates, vary in their physical characteristics. As a result, knowing the benefits of each allows one to select the correct material for any IR application.

 

Figure 1: Electromagnetic Spectrum

 

The Importance of Using the Correct Material

Since infrared light is comprised of longer wavelengths than visible light, the two regions behave differently when propagating through the same optical medium. Some materials can be used for either IR or visible applications, most notably fused silica, BK7 and sapphire; however, the performance of an optical system can be optimized by using materials better suited to the task at hand. To understand this concept, consider transmission, index of refraction, dispersion and gradient index. For more in-depth information on specifications and properties, view Optical Glass.

 

Transmission

The foremost attribute defining any material is transmission. Transmission is a measure of throughput and is given as a percentage of the incident light. IR materials are usually opaque in the visible while visible materials are usually opaque in the IR; in other words, they exhibit nearly 0% transmission in those wavelength regions. For example, consider silicon, which transmits IR but not visible light (Figure 2).

Figure 2: Uncoated Silicon Transmission Curve

 

Index of Refraction

While it is mainly transmission that classifies a material as either an IR or visible material, another important attribute is index of refraction (nd). Index of refraction is the ratio of the speed of light in a vacuum to the speed of light within a given material. It is a means of quantifying the effect of light "slowing down" as it enters a high index medium from a low index medium. It is also indicative of how much light is refracted when obliquely encountering a surface, where more light is refracted as nd increases (Figure 3).

Figure 3: Light Refraction from a Low Index to a High Index Medium

 

The index of refraction ranges from approximay 1.45 - 2 for visible materials and 1.38 - 4 for IR materials. In many cases, index of refraction and density share a positive correlation, meaning IR materials can be heavier than visible materials; however, a higher index of refraction also implies diffraction-limited performance can be achieved with fewer lens elements – reducing overall system weight and cost.

 

Dispersion

Dispersion is a measure of how much the index of refraction of a material changes with respect to wavelength. It also determines the separation of wavelengths known as chromatic aberration. Quantitatively, dispersion is inversely given by the Abbe number (vd), which is a function of the refractive index of a material at the f (486.1nm), d (587.6nm), and c (656.3nm) wavelengths (Equation 1).

 

Materials with an Abbe number greater than 55 (less dispersive) are considered crown materials and those with an Abbe number less than 50 (more dispersive) are considered flint materials. The Abbe number for visible materials ranges from 20 - 80, while the Abbe number for IR materials ranges from 20 - 1000.

 

Index Gradient

The index of refraction of a medium varies as the temperature changes. This index gradient (dn/dT) can be problematic when operating in unstable environments, especially if the system is designed to operate for one value of n. Unfortunay, IR materials are typically characterized by larger values of dn/dT than visible materials (compare N-BK7, which can be used in the visible, to germanium, which only transmits in the IR in the Key Material Attributes table in Infrared Comparison).

 

How to Choose the Correct Material

When choosing the correct IR material, there are three simple points to consider. Though the selection process is easier because there is a much smaller practical selection of materials for use in the infrared compared to the visible, these materials also tend to be more expensive due to fabrication and material costs.

 

Thermal Properties – Frequently, optical materials are placed in environments where they are subjected to varying temperatures. Additionally, a common concern with IR applications is their tendency to produce a large amount of heat. A material's index gradient and coefficient of thermal expansion (CTE) should be evaluated to ensure the user is met with the desired performance. CTE is the rate at which a material expands or contracts given a change in temperature. For example, germanium has a very high index gradient, possibly degrading optical performance if used in a thermally volatile setting.

Transmission – Different applications operate within different regions of the IR spectrum. Certain IR substrates perform better depending on the wavelength at hand (Figure 4). For example, if the system is meant to operate in the MWIR, germanium is a better choice than sapphire, which works well in the NIR.

Index of Refraction – IR materials vary in terms of index of refraction far more than visible materials do, allowing for more variation in system design. Unlike visible materials (such as N-BK7) that work well throughout the entire visible spectrum, IR materials are often limited to a small band within the IR spectrum, especially when anti-reflection coatings are applied.

Figure 4: Infrared Substrate Comparison (Wavelength Range for N-BK7 is Representative for the Majority of Substrates Used for Visible Wavelengths Such as B270, N-SF11, BOROFLOAT®, etc.)

 

Infrared Comparison

Although dozens of IR materials exist, only a handful is predominantly used within the optics, imaging, and photonics industries to manufacture off-the-shelf components. Calcium fluoride, fused silica, germanium, magnesium fluoride, N-BK7, potassium bromide, sapphire, silicon, sodium chloride, zinc selenide and zinc sulfide each have their own unique attributes that distinguish them from each other, in addition to making them suitable for specific applications. The following tables provide a comparison of some commonly used substrates.

 

Key IR Material Attributes

Name

Index of Refraction (nd)

Abbe Number (vd)

Density 
(g/cm3)

CTE 
(x 10-6/°C)

dn/dT 
(x 10-6/°C)

Knoop Hardness

Calcium Fluoride (CaF2)

1.434

95.1

3.18

18.85

-10.6

158.3

Fused Silica (FS)

1.458

67.7

2.2

0.55

11.9

500

Germanium (Ge)

4.003

N/A

5.33

6.1

396

780

Magnesium Fluoride (MgF2)

1.413

106.2

3.18

13.7

1.7

415

N-BK7

1.517

64.2

2.46

7.1

2.4

610

Potassium Bromide (KBr)

1.527

33.6

2.75

43

-40.8

7

Sapphire

1.768

72.2

3.97

5.3

13.1

2200

Silicon (Si)

3.422

N/A

2.33

2.55

1.60

1150

Sodium Chloride (NaCl)

1.491

42.9

2.17

44

-40.8

18.2

Zinc Selenide (ZnSe)

2.403

N/A

5.27

7.1

61

120

Zinc Sulfide (ZnS)

2.631

N/A

5.27

7.6

38.7

120

 

IR Material Comparison

Name

Properties / Typical Applications

Calcium Fluoride (CaF2)

Low Absorption, High Refractive Index Homogeneity

Used in Spectroscopy, Semiconductor Processing, Cooled Thermal Imaging

Fused Silica (FS)

Low CTE and Excellent Transmission in IR

Used in Interferometry, Laser Instrumentation, Spectroscopy

Germanium (Ge)

High nd, High Knoop Hardness, Excellent MWIR to FIR Transmission

Used in Thermal Imaging, Rugged IR Imaging

Magnesium Fluoride (MgF2)

High CTE, Low Index of Refraction, Good Transmission from Visible to MWIR

Used in Windows, Lenses, and Polarizers that Do Not Require Anti-Reflection Coatings

N-BK7

Low-Cost Material, Works Well in Visible and NIR Applications

Used in Machine Vision, Microscopy, Industrial Applications

Potassium Bromide (KBr)

Good Resistance to Mechanical Shock, Water Soluble, Broad Transmission Range

Used in FTIR spectroscopy

Sapphire

Very Durable and Good Transmission in IR

Used in IR Laser Systems, Spectroscopy, and Rugged Environmental Equipment

Silicon (Si)

Low Cost and Lightweight

Used in Spectroscopy, MWIR Laser Systems, THz Imaging

Sodium Chloride (NaCl)

Water Soluble, Low Cost, Excellent Transmission from 250nm to 16μm, Sensitive to Thermal Shock

Used in FTIR spectroscopy

Zinc Selenide (ZnSe)

Low Absorption, High Resistance to Thermal Shock

CO2 Laser Systems and Thermal Imaging

Zinc Sulfide (ZnS)

Excellent Transmission in Both Visible and IR, Harder and More Chemically Resistant than ZnSe

Used in Thermal Imaging

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
亚洲国产美女,麻豆成全视频免费观看在线看,麻豆成全视频免费观看在线看,精品国产欧美成人夜夜嗨
狠狠色丁香婷婷综合久久片| 日韩精品三区四区| 婷婷亚洲久悠悠色悠在线播放| 99亚偷拍自图区亚洲| 欧美日韩一级二级| 国产一区福利在线| 狠狠色伊人亚洲综合成人| 日韩亚洲国产中文字幕欧美| 精品粉嫩超白一线天av| 欧美三级三级三级| 国产**成人网毛片九色| 成人综合在线观看| 国产高清不卡一区| 国产精品亚洲一区二区三区妖精| 亚洲国产精品t66y| 精品一区二区三区免费毛片爱| 色哟哟一区二区| 欧美xxx久久| 久久99久久久欧美国产| 国产精品久久夜| 欧美在线综合视频| 免费成人在线视频观看| 欧美国产激情二区三区| 国产黄色91视频| 91麻豆精品91久久久久同性| 成人三级在线视频| 欧美精品xxxxbbbb| 日本乱人伦aⅴ精品| 亚洲va欧美va天堂v国产综合| 国产成人午夜片在线观看高清观看| 日本一区二区免费在线观看视频| 日韩影院在线观看| 欧美日韩在线播| 中文字幕亚洲一区二区av在线| 91首页免费视频| 一区二区三区欧美在线观看| 欧美一区二区高清| 国产午夜精品美女毛片视频| 一区二区国产视频| 国内成+人亚洲+欧美+综合在线| 国产精品美女久久福利网站| 91精品国产综合久久精品图片| 国产99精品国产| 日韩和欧美一区二区三区| 岛国精品一区二区| 欧美精品99久久久**| 99久久er热在这里只有精品15| 亚洲成年人影院| 天天做天天摸天天爽国产一区| 乱中年女人伦av一区二区| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 亚洲欧美国产77777| 亚洲免费观看视频| 欧美精品日韩精品| 亚洲aⅴ怡春院| 亚洲日本欧美天堂| 国产精品欧美久久久久无广告| 日韩美女一区二区三区四区| 久久久91精品国产一区二区三区| 蜜芽一区二区三区| 一区二区三区四区不卡视频| 1000部国产精品成人观看| 久久66热偷产精品| 久久久久久免费毛片精品| 粉嫩aⅴ一区二区三区四区五区| 日韩av一二三| 国产精品视频在线看| 激情欧美一区二区三区在线观看| 色综合欧美在线视频区| 欧美日韩精品久久久| 午夜精品福利一区二区三区蜜桃| 中文字幕在线视频一区| 欧美亚洲国产一区二区三区va| 日产精品久久久久久久性色| 国产91在线观看丝袜| 日韩一本二本av| 久久久久久免费毛片精品| 亚洲女同ⅹxx女同tv| 国产成人精品1024| 欧美日韩一级片在线观看| 欧美一区二区福利在线| 视频一区二区欧美| 日韩av中文在线观看| 日韩欧美中文字幕精品| 精品国产青草久久久久福利| 91免费看视频| 亚洲美女免费视频| 99久久夜色精品国产网站| 欧美性生活影院| 中文欧美字幕免费| 性做久久久久久久久| 欧美视频一区二区三区在线观看| 精品对白一区国产伦| 国产制服丝袜一区| 色综合久久88色综合天天| 日韩美女久久久| 亚洲h在线观看| 99国产精品一区| 日韩免费观看高清完整版在线观看| 成人国产视频在线观看| 国产一区二区三区精品欧美日韩一区二区三区| 色综合久久久久综合体| 日本欧美久久久久免费播放网| 国产成人在线观看免费网站| 麻豆国产一区二区| 精品综合久久久久久8888| 成人黄动漫网站免费app| 国产乱码精品一区二区三区五月婷| 久久精品99国产国产精| 国产精品自拍网站| 蜜桃av一区二区| 97久久人人超碰| 成人涩涩免费视频| 免费成人美女在线观看.| 亚洲精品国产第一综合99久久| 国产亚洲视频系列| 色天使久久综合网天天| 性做久久久久久| 另类小说色综合网站| 91久久精品一区二区| 91麻豆免费观看| 亚洲激情中文1区| 欧美二区三区的天堂| 五月婷婷另类国产| 日韩成人午夜电影| 亚洲va韩国va欧美va精品| 欧美三级日韩三级国产三级| www国产成人免费观看视频 深夜成人网| 亚洲嫩草精品久久| 久久成人av少妇免费| av中文字幕不卡| 欧美大尺度电影在线| 99精品视频免费在线观看| 国产精品久久久久aaaa| 亚洲成年人影院| 欧美高清dvd| 国产婷婷色一区二区三区四区| 亚洲宅男天堂在线观看无病毒| 国产视频在线观看一区二区三区| 亚洲伦理在线精品| 成人精品国产福利| 国产精品乱码久久久久久| 国产精品色哟哟网站| 欧美激情一区二区在线| 亚洲自拍另类综合| 久久久久久久久久电影| 国产精品99久久久久| 欧美日韩高清在线播放| 久久99精品国产麻豆婷婷| 天天色综合天天| 一区二区三区免费观看| 国产黄色精品网站| 亚洲国产精品二十页| 国产精品传媒视频| 91在线porny国产在线看| 久久久亚洲精品一区二区三区| 91精品国产综合久久久久| 韩国中文字幕2020精品| 国产成人午夜99999| 免费不卡在线视频| 亚洲妇熟xx妇色黄| 亚洲资源在线观看| 福利一区二区在线观看| 久久成人精品无人区| 色综合色狠狠天天综合色| 亚洲免费观看高清完整| 国产精品伦一区二区三级视频| 欧美精品一区二区三区在线| 日韩视频不卡中文| 久久综合久久久久88| 国产一区二区三区在线看麻豆| 91精品福利在线一区二区三区| 国产精品一二三四| 欧美日韩国产一区二区三区地区| 在线观看国产日韩| 亚洲色图在线视频| 亚洲视频一区二区免费在线观看| 亚洲精品一区二区三区在线观看| 91精品国产色综合久久ai换脸| 欧美一级片在线| 日韩欧美不卡在线观看视频| 国产精品视频一二| 中文幕一区二区三区久久蜜桃| 三级亚洲高清视频| 欧美一区日本一区韩国一区| 视频一区在线播放| 91成人在线观看喷潮| 99久久久久久99| 五月婷婷欧美视频| 一区二区久久久久久| 亚洲国产日韩综合久久精品| 亚洲成人免费看| 国产一区激情在线| 午夜伦欧美伦电影理论片| 26uuu亚洲综合色| 麻豆91小视频| 精品一区二区三区在线观看| 日韩欧美久久久| 欧美色视频在线观看| 欧美日韩你懂的|